EE Colloquium: Space-time wave packets: A new frontier for structured light

Abstract: Exercising control over the spatial degrees of freedom of the optical field has continued to yield breakthroughs over the past few decades, ranging from the discovery of Bessel beams and beams endowed with orbital angular momentum, to optical tweezers and traps, and the manipulation of the field in multimode optical fibers. Separately, put in parallel with these efforts, ultrafast pulse shaping has revolutionized our control over the temporal degree of freedom of the optical field. The spatial and temporal realms in optics have led for the most part independent lives with few examples of creative intersections. In this talk I show that precise, joint sculpting of the spatial and temporal degrees of freedom of optical fields – rather than modulating each separately – yields a new class of pulsed beams that I call ‘space-time’ (ST) wave packets. Surprising and useful optical behavior are exhibited by ST wave packets when freely propagating or when interacting with photonic devices, leading to a new frontier for the study of structured light. I will share our recent experimental and theoretical results from this rapidly emerging topic and sketch potential applications that could benefit from ST wave packets.

Biography: Ayman F. Abouraddy received the B.S. and M.S. degrees from Alexandria University, Alexandria, Egypt, in 1994 and 1997, respectively, and the Ph.D. degree from Boston University, Boston, MA, in 2003, all in electrical engineering. In 2003 he joined the Massachusetts Institute of Technology (MIT) as a postdoctoral fellow, and then became a Research Scientist at the Research Laboratory of Electronics in 2005. He is the coauthor of more than 120 journal publications, 240 conference presentations, and 70 invited talks; he holds seven patents, and has three patents pending, and is a fellow of the OSA. He joined CREOL, The College of Optics & Photonics, at the University of Central Florida as an assistant professor in September 2008 and was promoted to full professor in August 2017. Hi recent research interests are in the area of structured light, particularly in the emerging field of space-time optics and photonics, in addition to quantum optics and quantum information processing.


Share this event

facebook linked in twitter email

Media Contact: Chris Giebink



The School of Electrical Engineering and Computer Science was created in the spring of 2015 to allow greater access to courses offered by both departments for undergraduate and graduate students in exciting collaborative research fields.

We offer B.S. degrees in electrical engineering, computer science, computer engineering and data science and graduate degrees (master's degrees and Ph.D.'s) in electrical engineering and computer science and engineering. EECS focuses on the convergence of technologies and disciplines to meet today’s industrial demands.

School of Electrical Engineering and Computer Science

The Pennsylvania State University

207 Electrical Engineering West

University Park, PA 16802


Department of Computer Science and Engineering


Department of Electrical Engineering